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Abstract. Real-time systems are notoriously difficult to design and implement,
and, as many real-time problems are safety-critical, their solutions must be re-
liable as well as efficient and correct. While higher-level programming mod-
els (such as the Real-Time Specification for Java) permit real-time program-
mers to use language features that most programmers take for granted (objects,
type checking, dynamic dispatch, and memory safety) the compromises required
for real-time execution, especially concerning memory allocation, can create as
many problems as they solve. This paper presents Scoped Types and Aspects for
Real-Time Systems (STARS) a novel programming model for real-time systems.
Scoped Types give programmers a clear model of their programs’ memory use,
and, being statically checkable, prevent the run-time memory errors that bedevil
the RTSJ. Adopting the integrated Scoped Types and Aspects approach can sig-
nificantly improve both the quality and performance of a real-time Java systems,
resulting in simpler systems that are reliable, efficient, and correct.

1 Introduction

The Real-Time Specification for Java (RTSJ) introduces abstractions for managing re-
sources, such as non-garbage collected regions of memory [8]. For instance, in the
RTSJ, a series ofscoped memoryclasses lets programmers manage memory explicitly:
creating nested memory regions, allocating objects into those regions, and destroying
regions when they are no longer needed. In a hard real-time system, programmers must
use these classes, so that their programs can bypass Java’s garbage collector and its
associated predictability and performance penalties. But these abstractions are far from
abstract. The RTSJ forces programmers to face more low-level details about the behav-
ior of their system than ever before — such as how scoped memory objects correspond
to allocated regions, which objects are allocated in those regions, how those regions
are ordered — and then deals with mistakes by throwing dynamic errors at runtime.
The difficulty of managing the inherent complexity associated with real-time concerns
ultimately compromises the development, maintenance and evolution of safety critical
code bases and increases the likelihood of fatal errors at runtime.

This paper introduces Scoped Types and Aspects for Real-Time Systems (STARS),
a novel approach for programming real-time systems that shields developers from many
accidental complexities that have proven to be problematic in practice. Scoped Types
use a program’s package hierarchy to represent the structure of its memory use, mak-
ing clear where objects are allocated and thus where they are accessible. Real-Time
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Fig. 1. Overview of STARS. Application logic is written according to the Scoped Types disci-
pline. TheJAVA COPverifier uses scoped types rules (and possibly some user-defined application-
specific constraints) to validate the program. Then, an aspect weaver combines the application
logic with the real-time behavior. The result is a real-time Java program that can be executed on
any STARS-compliant virtual machine.

Aspects then weave in allocation policies and implementation-dependent code — sep-
arating real-time concerns further from the base program. Finally, Scoped Types’ cor-
rectness guarantees, combined with the Aspect-oriented implementation, removes the
need for memory checks or garbage collection at runtime, increasing the resulting sys-
tem’s performance and reliability. Overall, STARS is a methodology that guides real-
time development and provides much needed tool support for the verification and the
modularization of real-time programs.

Fig. 1 illustrates the STARS methodology. Programmers start by writing application
logic in Java with no calls to the RTSJ APIs. The code is then verified against a set of
consistency rules — STARS provides a set of rules dealing with memory management;
users may extend these rules with application-specific restrictions. If the program type
checks, the aspects implementing the intended real-time semantics of the program can
be woven into the code. The end result is a Real-time Java program, which can be run
in any real-time JVM that supports the STARS API.

The paper thus makes the following contributions:

1. Scoped Types.We use a lightweight pluggable type system to model hierarchical
memory regions. Scoped Types are based on familiar Java concepts like packages,
classes, and objects, can be explained with a few informal rules, and require no
changes to Java syntax.

2. Static verification via the JAVA COP pluggable types checker [1]. We have encoded
Scoped Types into a set of JAVA COP rules used to validate source code. We also
show how to extend the built-in rules with application-specific constraints.

3. Aspect-based real-time development.We show how an aspect-oriented approach
can help decoupling real-time memory management concerns from the main appli-
cation logic.

4. Implementation in a real-time JVM. We demonstrate viability of STARS with an
implementation in the Ovm framework [5]. Only minor changes (18 lines of code
in all) were needed to support STARS.

5. Empirical evaluation. We conducted a case study to show the impact STARS has
on both code quality and performance in a 20 KLoc hard real-time application.
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Refactoring RTSJ code to a STARS program proved easy and the resulting program
enjoyed a 28% performance improvement over the RTSJ equivalent.

The paper proceeds as follows. After a survey of background and previous work,
Section 2 presents an overview of the STARS programming model while Section 3
overviews the current STARS prototype implementations. Section 4 follows with a case
study using STARS in the implementation of a real-time collision detection system.
Finally we conclude with discussion and future work.

1.1 Background: The Challenges of Real-Time Memory Management

The Real-time Specification for Java (RTSJ) provides real-time extensions to Java that
have shown to be effective in the construction of large-scale systems [5, 19, 33]. Two
key benefits of the RTSJ are first, that it allows programmers to write real-time pro-
grams in a type-safe language, thus reducing opportunities for catastrophic failures;
and second, that it allows hard-, soft- and non-real-time tasks to interoperate in the
same execution environment. To achieve this second benefit, the RTSJ adopts a mixed-
mode memory model in which garbage collection is used for non-real time activities,
while manually allocated regions are used for real-time tasks. Though convenient, the
interaction of these two memory management disciplines causes significant complexity,
and consequently is often the culprit behind many runtime memory errors.

The problem, in the case of real-time tasks, is that storage for an allocation request
(i.e.new) must be serviced differently from standard Java allocation. In order to handle
real-time requests, the RTSJ extends the Java memory management model to include
dynamically checked regions known asscoped memory areas(or also memory scopes),
represented by subclasses ofScopedMemory . A scoped memory area is an allocation
context which provides a pool of memory for threads executing in it. Individual objects
allocated in a scoped memory area cannot be deallocated, instead, an entire scoped
memory area is torn down as soon as all threads exit that scope. The RTSJ defines
two distinguished scopes forimmortalandheapmemory, respectively for objects with
unbounded lifetimes and objects that must be garbage collected. Fig. 2 illustrates the
allowed reference pattern in RTSJ. Two new kinds of threads are also introduced:real-
time threads which may access scoped memory areas; andno heap real-timethreads,
which in addition are protected from garbage collection pauses, but which cause dy-
namic errors if they attempt to access heap allocated objects.

Scoped memory areas provide methodsenter(Runnable) andexecuteIn-
Area(Runnable) that permit application code to execute within a scope, allocating
and accessing objects within that scope. Using nested calls, a thread may enter or ex-
ecute runnables in multiple scopes, dynamically building up the scope hierarchy. The
differences between these two methods are quite subtle [8]: basically,enter must
be used to associate a scope with a thread, whereasexecuteInArea (temporarily)
changes a thread’s active scope to a scope it has previouslyenter ed. Misuse of these
methods can cause dynamic errors, e.g. aScopedCycleException is thrown when
a user tries toenter aScopedMemory that is already accessible. Reference counting
on enter s ensures that all the objects allocated in a scope are finalized and reclaimed
when the last thread leaves that scope.
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Fig. 2.Memory Management in the Real-time Specification for Java.

Real-time developers must take these memory scopes and threading models into
account during the design of a real-time system. Scoped memory areas can be nested to
form a dynamic, tree-shaped hierarchy, where child memory areas have strictly shorter
lifetimes than their parents. Because the hierarchy is established dynamically, memory
areas can move around within the hierarchy as the program runs. Dynamically enforced
safety rules check that a memory scope with a longer lifetime does not hold a reference
to an object allocated in a memory scope with a shorter lifetime. This means that heap
memory and immortal memory cannot hold references to objects allocated in scoped
memory, nor can a scoped memory area hold a reference to an object allocated in an
inner (more deeply nested) scope. Once again, errors are only detected at runtime and
cause runtime exceptions.

Given that safety and reliability are two goals of most real-time systems, the fact that
these safety rules are checkeddynamicallyseems, in retrospect, to be an odd choice. The
only guarantee that RTSJ gives to a programmer is that their programs will fail in a con-
trolled manner: if a dynamic assignment into a dynamically changing scope hierarchy
trips a dynamic check, the program will crash with anIllegalAssignmentError .

Expressive power.The flip side of the coin is that static memory safety will reduce the
expressive power of RTSJ programs. Any static discipline, by its necessarily conserva-
tive nature, will rule out some perfectly safe programs. The technique described in this
article is no different. In many application contexts, the added safety and decrease in
debugging/testing effort will be well worth it. In terms of expressive power, there is an
intuitive ordering between the approaches to memory management. Real-time garbage
collection is more expressive than scoped memory as there are no restriction on valid
pointers. Scoped memory is strictly more expressive than STARS as STARS is imple-
mented by imposing restrictions on the use of the scoped memory API.

It is interesting that theScopedMemory write-barriers are pessimistic in the sense
that they prevent valid references from being stored on the ground that they could be
used after they become stale. But a stale reference is only dangerous if it is used. One
can imagine a real-time system where two sibling scopes are known to the programmer
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to have equal lifetimes, it would thus be perfectly safe to let them refer to each other
as the cross-scope references would not be used after they become stale. Yet, there is
no way to do this with the RTSJ as it stands. One could envision a more expressive
memory model where reference are coupled with time stamps and read barriers are
used to ensure validity.

The tension between expressiveness and correctness can show up in other subtle
ways. When programming with the RTSJ, especially on a large project, the best pro-
gramming practices in large teams can end up being more restrictive than a static type
system – just to be on the safe side. Consider for example the changes that had to be
made to the standard library classVector for it to be RTSJ-safe:

1 protected final MemoryArea
2 thisArea = MemoryArea.getMemoryArea(this);
3

4 public synchronized void trimToSize() {
5 Object[] newArray = null;
6 try {
7 newArray = (Object[]) thisArea.newArray(Object. class ,
8 elementCount);
9 } catch (IllegalAccessException iae) {

10 throw new InternalError("Not possible " + iae);
11 }
12 System.arraycopy(elementData, 0, newArray, 0, elementCount);
13 elementData = newArray;
14 }

The non-RTSJ version of this class, when it needs to resize or copy an instance,
simply allocates a newObject array of the right size. In the RTSJ version of the code,
this is not safe as one does not know for sure where the code is currently executing.
Allocating the object in the current memory area may result in an violation of the scoped
memory rules (this would occur if the current scope is a child of the scope in which the
Vector was allocated).

To be scope safe, the designer of the RTSJ version ofVector decided to allocate
all internal array objects in the memory area where the originalVector object was
allocated. This is not the only solution, but it is at least safe. The implication is that
what could have a been a fast straightforward call to a linear-time memory allocator
turns into a reflective allocation. Furthermore, to reduce the cost of the operation, the
Vector instance caches the memory area where the instance was allocated in a field
of the object.

There are two conclusions to be drawn from this small example. Firstly, even with-
out a static typing discipline, programmers will have to take steps to make sure that
code is scope-safe. In a large project this steps may impose stringent restrictions on
expressive power. Secondly, reusability of libraries, while desirable, is questionable.
The trimToSize() method is almost unusable in a scoped context as it is not able
to deallocate the original array (the class, like most of Java code, was written with the
assumption of a garbage collector reclaiming unreachable objects).
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1.2 Related Work: Programming with Scoped Memory

The Real-time Specification for Java [8] was published in 2000. In later paper Bollella
and Reinholtz argued for the need for scoped memory [9]. Readers interested in a dis-
cussion are encouraged to consults the paper by Wellings and Puschner [38]. Design
patterns for programming with scoped memory have been investigated by several au-
thors [7, 31, 32]. The design and implementation of RTSJ virtual machines have been
documented in [11, 17, 2]. Several papers have reported on experience with program-
ming with RTSJ [10, 29, 34, 19, 2].

Beebee and Rinard provided one of the early implementations of the RTSJ memory
management extensions [6]. They found it “close to impossible” to develop error-free
real-time Java programs without some help from debugging tools or static analysis. The
difficulty of programming with RTSJ motivated Kwon, Wellings and King to propose
Ravenscar-Java [27], which mandates a simplified computational model. Their goal
was to decrease the likelihood of catastrophic errors in mission critical systems. Further
work along these lines transparently associates scoped memory areas with methods,
avoiding the need for explicit manipulation of memory areas [26]. Limitations of this
approach include the fact that memory areas cannot be multi-threaded.

In contrast, systems like Islands [23], Ownership Types [30], and their successors
restrict the scope of references to enable modular reasoning. The idea of using own-
ership types for the safety of region-based memory was first proposed by Boyapati et
al. [12], and required changes to the Java syntax and explicit type annotations. Research
in type-safe memory memory management, message-based communication, process
scheduling and the file system interface management for Cyclone, a dialect of C, has
shown that it is possible to prevent dangling pointers even in low-level codes [21]. The
RTSJ is more challenging than Cyclone as scopes can be accessed concurrently and are
first-class values.

Scoped types are one of the latest developments in the general area of type systems
for controlled sharing of references [39]. This paper builds on Scoped Types and pro-
poses a practical programming model targeting the separation of policy and mechanism
within real-time applications. The key insight of Scoped Types is the necessity to make
the nested scope structure of the program explicit: basically, every time the program-
mer writes an allocation expression of the formnew Object() , the object’s type
shows where the object fits into the scope structure of the program. It is not essential
to know which particular scope it will be allocated in, but rather the object’s hierarchi-
cal relationship to other objects. This ensures that when an assignment expression, e.g.
obj.f=new F() , is encountered, Scoped Types can statically (albeit conservatively)
ensure that the assignment will not breach the program’s scope structure.

Deters and Cytron investigated a technique for inferring memory regions for RTSJ
programs in [18]. They use traces to identify the lifetime and visibility requirements
of objects. Running their tool they obtain very fine grain information about lifetime
of objects. They found scope hierarchies that were 80 levels deep. The limitation of
that study was that it did not take multi-threading into account and looked at non-real-
time codes such as thejavac compiler. Furthermore, using dynamic traces is always
problematic because the results are dependent on the input to the program. Another ap-
proach is to try to infer scopes by static analysis as has been done in [16, 28, 20]. The



STARS for Real-time Java Memory Management 7

difficulty with static analysis-based approach is that the results are inherently conserva-
tive. Small changes in the source code can cause an analysis to move an allocation site
to ImmortalMemory . When this happens, there is no feedback to the programmer.
Thus, it is likely that the testing burden will increase. As none of the published papers
has been run on real-time programs, the applicability of these techniques remains an
open question.

Spoonhower et al. proposed a new abstraction called Eventrons [35] for memory-
safe real-time programming. The role of Eventrons is to circumvent interference with
the garbage collector by using objects that are not managed by the collector. The differ-
ence between Eventrons and the RTSJ are that Eventrons are statically safe. An Even-
tron is scheduled periodically and is allowed to preempt the garbage collector. The in-
variant that must be maintained for this to be safe is that all objects manipulated by the
Eventron must be pinned down so that they are not moved by the collector. Furthermore,
during its execution, an Eventron must not access objects that are in the garbage col-
lected heap as these may be in an inconsistent state. To ensure safety, Eventrons impose
restrictions on the programming model; there can be no allocation within an Eventron,
an Eventron is not allowed to store into a reference field and finally it is not allowed to
perform blocking operations. The constraints are enforced by a run-time data-sensitive
inter-procedural analysis. Eventrons are thus a more restrictive model than STARS, but
represent a very interesting point in the design space. They have been incorporated into
IBM’s product RTSJVM under the name of XRT.

Safety-Critical Java.Under the Java community process JSR-302, a new standard for
safety-critical application is currently being developed. This standard will restrict the
RTSJ programming model to simplify the task of verification and validation of safety-
critical codes. Like STARS, JSR-302 will propose a simplified programming model.
One of the current candidates for this specification is [22]. Among the recommendations
that are being considered are a simplification of the memory model and of the threading
API. We expect that STARS could be adapted to match the safety-critical standard and
provide additional static guarantees.

2 The STARS Programming Model

STARS guides the design and implementation of real-time systems with a simple, ex-
plicit programming model. As the STARS name suggests, this is made up of two parts,
Scoped Types, and Aspects. First, Scoped Types ensure that the relative memory lo-
cation of any object is obvious in the program text. We use nested packages to define
a staticscope hierarchy in the program’s code; a pluggable type checker ensures pro-
grams respect this hierarchy; at runtime, the dynamic scope structure simply instantiates
this static hierarchy. Second, we use Aspect-Oriented Programming to partially decou-
ple the real-time parts of STARS programs from their application logic. Aspects are
used as declarative specifications of the real-time policies of the applications (the size
of scoped memory areas or scheduling parameters of real time threads), but also to link
Scoped Types to their implementations within a real-time VM.

The main points of the STARS programming model are illustrated in Fig. 3. The
main abstraction is thescoped package. A scoped package is the static manifestation
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of an RTSJ scoped memory area. Classes defined within a scoped package are either
gatesor scoped classes. Every instance of a gate class has its own unique scoped mem-
ory area, and every instance of a scoped class will be allocated in the memory area
belonging to a gate object in the same package. Because gate classes can have multi-
ple instances, each scoped package can correspond to multiple scoped memory areas
at runtime (one for each gate instance), just as a Java class can correspond to multiple
instances. Then, the dynamic structure of the nested memory areas is modeled by the
static structure of the nested scoped packages, in just the same way that the dynamic
structure of a program’s objects is modeled by the static structure of the program’s class
diagram.

Scoped types are allowed to refer to types defined in an ancestor package, just as
in RTSJ, objects allocated in a scope are allowed to refer to an ancestor scope: the
converse is forbidden. The root of the hierarchy is the packageimm, corresponding to
RTSJ’s immortal memory. There will be as many scoped memory areas nested inside
the immortal memory area as there are instances of the gate classes defined inimm’s
immediate subpackages.

STARS does impact the structure of Real-time Java programs. By giving an addi-
tional meaning to thepackage construct, wede factoextend the language. This form
of overloading of language constructs has the same rationale as the definition of the
RTSJ itself — namely to extend a language without changing its syntax, compiler, or
intermediate format. In practice, STARS changes the way packages are used: rather
than grouping classes on the basis of some logical criteria, we group them by lifetime
and function. In our experience, this decomposition is natural as RTSJ programmers
must think in terms of scopes and locations in their design. Thus it is not surprising
to see that classes that end up allocated in the same scope are closely coupled, and so

imm.g

heapimm

Gate

C

AB
imm.B

imm.g.C

package imm;

class B {...}

package imm.g;

class G extends Gate {...}

class C {...}

G

Fig. 3.The STARS Programming Model. Each runtime scope has a corresponding Java package.
Objects defined in a package are always allocated in a corresponding scope. A scope’s gate is
allocated in its parent scope.G is a gate class that extends a helper classGate . (Gate is an
abstract class described in Sec. 2.3) Just as with the RTSJ’s scoped memory, references from
a parent scope to a child scope are forbidden. Reference from scopes into the heap are also
disallowed.
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grouping them in the same package is not unrealistic. We argue that this package struc-
ture is a small price to pay for STARS’ static guarantees, and for the clarity it brings to
programs’ real-time, memory dependent code.

2.1 Scoped Types: Static Constraints

The following Scoped Types rules ensure static correctness of STARS programs. In this
rules, we assume that a scoped package contains exactly onegate classand zero or
more scoped classes or interfaces (thescoped types). By convention, the gate is named
with the package’s name with the first letter capitalized. The descendant relation on
packages is a partial order on packages defined by package nesting. The distinguished
packageimm is the root of the scope hierarchy. In the following we useS andG to
denote respectively scoped and gate types, we useC to refer to any class. We usep to
refer to the fully qualified name of a package. We refer to types not defined in a scoped
package asheap types.

Rule 1 (Scoped Types).

1. Any direct or indirect subpackages ofimm are scoped.
2. Any type not defined in a scoped package is a heap type.
3. The type of a gate classp.G defined within a scoped packagep is a gate type.
4. The type of any non-gate interface or classp.S defined within a scoped package

p is a scoped type. The type of an array with elements of scoped type is a scoped
type.

Rule 2 (Visibility).

1. An expression of scoped typep.S is visible in any type defined inp or any of its
subpackages.

2. An expression of gate typep.G is visible in any type defined in the immediate
super-package ofp. An exception to this rule is the local variablethis which can
be used within a gate class.

3. An expression of a type defined inimm is visible in any types.
4. An expression of heap type is only visible in other heap types.

The visibility rule encodes the essence of the RTSJ access rules. An object can be ref-
erenced from its defining memory area (denoted statically by a package), or from a
memory area with shorter lifetime (a nested package). Gate classes are treated differ-
ently, as they are handles used from a parent scope to access a memory area. They must
only be accessible to the code defined in the parent scope. The reason other types in
the same scope package cannot refer to a gate is that we must avoid confusion between
gates of the same type; a parent can instantiate many gates of the same type and the
contents of these gates must be kept separate. Even though a gate’s type is not visible in
its own class, a single exception is made so that a gate object can refer to itself through
thethis pointer (because we know which gate “this ” is).
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Rule 3 (Widening). An expression of a scoped typep.S can be widened only to an-
other scoped type inp. An expression of a gate typep.G cannot be widened to any
other types.

Rule 3 is traditional in confined type systems where types are used to enforce structural
properties on the object graph. Preventing types from being be cast to arbitrary super-
types (in particularObject ) makes it possible to verify Rule 2 statically.

Rule 4 (Method Inheritance). An invocation of some methodmon an expression of
scoped typep.S wherep is a scoped package is valid ifmis defined in a classp.S’
in the same package. An invocation of a methodmon an expression of gate typep.G is
valid only ifmis defined inp.G .

Rule 4 prevents a more subtle form of reference leak: within an inherited method, the
receiver (i.e.this ) is implicitly cast to the method’s defining class — this could lead
to a leak if one were to invoke a method inherited from a heap class.

Rule 5 (Constructor Invocation). The constructor of a scoped classp.S can only be
invoked by methods defined inp.

Rule 5 prevents a subpackage from invokingnew on a class that is allocated in a dif-
ferent area than the currently executing object. This rule is not strictly necessary, as
an implementation could potentially reflect upon the static type of the object to dy-
namically obtain the proper scope. In our prototype, we use factory methods to create
objects.

Rule 6 (Static Reference Fields).A typep.S defined in a scoped packagep is not
allow to declare static reference fields.

A static variable would be accessible by different instances of the same class allocated
in different scopes.

Correctness The fact that a package can only have one parent package trivially ensures
that the RTSJ single parent rule will hold. Moreover, a scope-allocated objecto may
only reference objects allocated in the scope ofo, or scopes with a longer lifetime,
preventing any RTSJIllegalAssignmentError . For example, suppose that the
assignmento.f=o’ is in the scopes , whereo ando’ have typesp.C andp’.C’
respectively. Ifp.C is a scoped type, then the rules above ensure thato ando’ can
only be allocated ins or its outer scopes. By Rules 2 and 3, the type of the fieldf
is defined inp’ , which is visible top.C . Thus, the packagep’ is the same as or a
super-package ofp and consequentlyo’ must be allocated in the scope ofo or its outer
scope. The same is true ifp.C is a gate type, in which caseo either representss or a
direct descendant ofs . A formal soundness argument can be found in Sec. 5.



STARS for Real-time Java Memory Management 11

2.2 Specification files

It is not always convenient to tie scoped types to the package structure. Sometimes,
for software engineering reasons, it may be necessary to treat class defined in another
packageas if they were defined in a scoped package. This can be done by simply adding
a specification file, which map classes to their corresponding gates. The format of this
file is a sequence of predicatesscopedIn(className,packageName) .

1 declare scopedIn(StateTable, imm.runner);
2 declare scopedIn(Vector3d, imm.runner);

Fig. 4. A specification file in JavaCop notation could declare that some classes, e.g.Vector3d
andStateTable , are to be treated as scoped within a package, e.g.imm.runner .

Fig. 4 gives an example of a specification file. For all practical purposes, the classes
are type checked as part of the package they are declared to be scoped in. This means
they have to obey to all the type rules of the scoped type system. In order to maintain
correctness of the approach a class can only be be bound to one package in a given
application. If this was not the case, the type system would not be able to prevent refer-
ences from leaking from one context to the other.

One advantage of using specification files is that one class can be used in different
scopes in different applications. On the other hand, there is a certain loss of clarity in
the code as the allocation context of the class is not immediately visible.

2.3 Using Aspects

Though the design of memory management in a real-time system may be clear, typi-
cally, its implementation will be unclear, because it is inherently tangled throughout the
code. For this reason we propose an aspect-oriented approach for modularizing scope
management. This part of STARS is implemented using a subset of the Aspect-Oriented
Programming features provided by AspectJ [25].1 After a program has been statically
verified, aspects are composed with the Java base-level application. The aspects weave
necessary elements of the RTSJ API into the system. This translation depends upon
the program following the Scoped Type discipline: if the rules are broken, the resulting
program will no longer obey the RTSJ scoped memory discipline, and then either fail
at runtime with just the kind of an exception we aim to prevent; or worse, if running on
a virtual machine that omits runtime checks, fail in some unchecked manner.

In this paper, we focus on the interplay between threads and memory and show that
with a simple API, it is possible to isolate many common real-time idioms. Fig. 5 shows
the key features of the STARS interface. The packagescope contains two classes.
ClassSTARSprovides a static methodwaitForNextPeriod() and an instance

1 For performance, predictability and safety reasons we recommend users to stay away from
dynamic features such ascflow and features that require instance-based aspect instantiation
such asperthisandpertarget.
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methodrunInThread() . TheSTARSsubclassGate has a private field that holds a
reference to a memory area. This is field is not accessible to user code and it’s use will
be detailed next. The annotation@WidenScoped is described in Sec. 3.3.

1 package scope;
2

3 public abstract class STARS {
4 static public boolean waitForNextPeriod() { ... }
5 public @WidenScoped void runInThread(Runnable r) {}
6 ...
7 }
8

9 public abstract class Gate extends STARS {
10 private MemoryArea mem;
11 }

Fig. 5. STARS Interface. Thescope package contains two classes,STARSand Gate , and an
abstract aspectScopedAspect . Every gate class inherits fromGate and has access to two
methodswaitForNextPeriod() andrunInThread() .

The API is intentionally simple. Gate classes must extendscope.Gate , which
gives access to two methods:waitForNextPeriod() is used to block a thread un-
til its next release event. This is only meaningful for periodic tasks. The second method,
runInThread(Runnable) , is used to start a new real-time thread. The single argu-
ment ofrunInThread is an instance of class that implements theRunnable inter-
face. The method has no behavior. The intended behavior, namely executing therun()
method of the argument in a new real-time thread, will be implemented in an aspect.
The real-time properties of the thread are left unbound in the Java-level code and will
be specified at the aspect level.

The STARS API includes a further component, a set of predefined AspectJ pointcut.
Fig. 6 shows the main pointcuts:NewGate(g) which corresponds to the creation of
a gate objectg, GateCall(g) which corresponds to a call of a method of a subclass
of gate (excluding methods inherited from STARS), andRunInThread(r,g) which
describes an invocation of the STARS methodrunInThread() where the receiver is
g and the logic isr .

Associating Memory Areas with Gates:Specifying memory area parameters is done
by declaring anafter advice to the initialization of a newly allocated gate. This must
be done in aprivileged aspect to allow access to the privateGate.mem field. The
advantage of using a privileged aspect is that the field need not be madepublic , this
is important as it prevents Java-level code from modifying or even reading that field. As
the type ofmemis the abstract classScopedMemory , the advice must specify one of
its subclasses,LTMemory or VTMemory, to provide linear or variable time allocation
of objects. At the same time, the advice must select an initial and maximal size for the
area. The following code fragment is an example of an advice:
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1 after (Gate g): NewGate(g) && execution (MyGate. new(..)){
2 g.mem = new LTMemory( size );
3 }

This is an advice for an application class calledMyGate . The developer has chosen
aLTMemory area and has specified a maximum size for the area.

The code can get more involved whenSizeEstimator s are used to determine
the proper size of the area. The following code fragment, Fig. 7, shows an advice that
creates two instances of theSizeEstimator class. Theinitial estimator reserves
space for 100 instances ofVector3d and 20 instances ofAircraft . The second es-
timator is used for the maximum size of the memory area. In this example,LTMemory
is used to ensure linear time allocation.

Creating Threads:With STARS, threads are weaved in by aspects. The Java-level code
does not need to include thread creation statements or calls to related RTSJ APIs. In-
stead the Java-level code will have a call torunInThread(r) wherer is a runnable
which contains arun() method. This runnable is the logic that will be run by the
real-time thread.

As before, we use an advice, in this case anaround advice, to weave the thread
creation code. The example of Fig. 8 shows how to bind aRealtimeThread to a par-
ticular call ofrunInThread . The arguments to the advice are a gateg and a runnable
r . The code creates several objects, instances ofPriorityParameters , Rela-
tiveTime , andPeriodicParameters , which are used to configure theReal-
timeThread . When the thread is started, it will run in the memory area denoted by
g.mem and execute therun() method ofr .

We now show an example, Fig. 9, of Java-level code that can be advised by the
STARS aspect of Fig. 8 and Fig. 7. The following code fragment creates an instance of
some application subclass ofGate , the classMyGate used in the example of Fig. 7.

1 privileged abstract aspect ScopedAspect {
2 abstract pointcut InScope();
3 pointcut NewGate(Gate g) : execution (Gate+. new(..))
4 && target(g)
5 && InScope();
6 pointcut GateCall(Gate g) :
7 execution ( public void Gate+.*(..))
8 && this(g);
9 pointcut RunInThread(Runnable r, STARS g) :

10 execution (void STARS+.runInThread(..))
11 && target(g)
12 && args(r);
13 ...
14 }

Fig. 6. STARS Interface. Every STARS aspect extendsScopedAspect , must define pointcut
InScope and has access to a number of predefined pointcuts.
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1 after (Gate g): NewGate(g) && execution (MyGate. new(..)){
2 SizeEstimator initial = new SizeEstimator();
3 inital.reserve(Vector3d. class , 100);
4 inital.reserve(Aircraft. class , 20);
5 SizeEstimator maximum = new SizeEstimator( initial, 3);
6 g.mem = new VTMemory( initial, maximum );
7 }

Fig. 7.This advice binds aRealTimeThread to each invocation ofrunInThread .

1 void around (STARS g, Runnable r): RunInThread(r, g){
2 PriorityParameters priority =
3 new PriorityParameters(PRIORITY);
4 RelativeTime time = new RelativeTime(PERIOD, 0);
5 PeriodicParameters period =
6 new PeriodicParameters(null, time, null, null, null);
7 Thread t = new RealtimeThread(priority, period,
8 null, ((Gate) g).mem, null, r);
9 t.start();

10 }

Fig. 8.This advice binds aRealTimeThread to each invocation ofrunInThread .

The advice of Fig. 7 will create the instanceVTMemory after the creation of the in-
stance ofMyGate . The body ofrunInThread() (which is empty) will never be
executed, instead the newly created runnable object will be passed in as argument to
the RealtimeThread created in Fig. 8. The behavior of this simple program is to
periodically print a message on the console. The program will terminate with an out
of memory exception when theVTMemory area fills up withStringBuffer and
String objects allocated as a side effect of string concatenation.

1 Gate gate = new MyGate();
2 gate.runInThread( new Runnable() {
3 public void run() {
4 while(true) {
5 printline("iteration " + i++);
6 STARS.waitForNextPeriod();
7 }
8 });
9 ...

Fig. 9.Application example.

Periodic real-time threads are not the only way to arrange for the execution of
real-time activities in the RTSJ. Fig. 10 shows how to bind a runnable to an an asyn-
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chronous event handler. This is done, again, by an around advice attached to calls to
the runInThread() method of aGate . There is a difference though, in the case
of an event handler the Java-level code should not use thewaitForNextPeriod()
method. The way to deals with this is to use AspectJ to report calls to the method as
compile-time errors as shown in Fig. 10.

1 void around (STARS g, Runnable r): RunInThread(r, g){
2 final Runnable run = r;
3 BoundAsyncEventHandler handler =
4 new BoundAsyncEventHandler(priority, release, null,
5 ((Gate)g).mem, null, false, r)
6 {
7 Runnable logic = run;
8 public void handleAsyncEvent() {
9 logic.run();

10 }
11 };
12 PeriodicTimer timer =
13 new PeriodicTimer(start, period, handler);
14 }
15

16 declare error : call(STARS.waitForNextPeriod());

Fig. 10. This advices bindsrunInThread calls to an asynchronous event handler and turns
calls towaitForNextPeriod into compile-time errors.

Memory and threading are not the only real-time concerns that can be modularized
with aspects. Tsang, Clarke and Baniassad have looked at some of the other uses of
AspectJ in RTSJ programs [36]. Furthermore, calls to the RTSJ API are not the only
parts of a system relevant from a real-time point of view. For instance, the choice of data
structures or algorithm can be crucial for the timing properties of system. An example
of such use of aspects can be found in the work of Wang et al. [37].

3 The STARS Prototype Implementation

The STARS prototype has two software components — a checker, which takes plain
Java code that is supposed to conform to the Scoped Types discipline, and verifies that
it does in fact follow the discipline, and an series of AspectJ aspects that weaves in the
necessary low-level API calls to run on a real-time virtual machine.

3.1 Checking the Scoped Types Discipline

We must ensure that only programs that follow the scoped types discipline are accepted
by the system: this is why we begin by passing our programs through a checker that en-
forces the discipline. Rather than implement a checker from scratch, we have employed
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the JAVA COP “pluggable types” checker [1]. Pluggable types [13] are a relatively re-
cent idea, developed as extensions of soft type systems [15] or as a generalization of the
ideas behind the Strongtalk type system [14]. The key idea is that pluggable types layer
a new static type system over an existing (statically or dynamically typed) language,
allowing programmers to have greater guarantees about their programs’ behaviour, but
without the expense of implementing entirely new type systems or programming lan-
guages. JAVA COP is a pluggable type checker for Java programs — using JAVA COP,
pluggable type systems are designed by a series of syntax-directed rules that are layered
on top of the standard Java syntax and type system and then checked when the program
is compiled. STARS is a pluggable type system, and so it is relatively straightforward to
check with JAVA COP. The design and implementation of JAVA COP is described in [1].

The JAVA COP specification of the Scoped Type discipline is approximately 300
lines of code. Essentially, we provide two kinds of facts to JAVA COP to describe Scoped
Types. First we define which classes must be considered scoped or gate types; and then
we restrict the code of those classes according to the Scoped Type rules.

Defining Scoped Types is relatively easy. Any class declared within theimm pack-
age or any subpackage is either a scoped type or a gate. Declaring a scoped type in the
JAVA COP rule language is straightforward: a class or interface is scoped if it is in a
scoped package and is not a gate. A gate is a class declared within a scoped package
and with a name that case-insensitively matches that of the package. Array types are
handled separately: an array is scoped if its element types are scoped.

1 declare gateNamed(ClassSymbol s){
2 require (s.packge.name.equalsIgnoreCase(s.name));
3 }
4 declare scoped(Type t){
5 require (!t.isArray);
6 require (!gateNamed(t.getSymbol));
7 require (scopedPackage(t.getSymbol.packge));
8 }
9 declare scoped(Type t){

10 require (t.isArray && scoped(t.elemtype));
11 }
12 declare gate(Type t){
13 require (!t.isArray);
14 require (gateNamed(t.getSymbol));
15 require (scopedPackage(t.getSymbol.packge));
16 }

The rule that enforces visibility constraints is only slightly more complex. The fol-
lowing rule matches on a class definition (line 1) and ensure that all types of all syntax
tree nodes found within that definition (line 2) meet the constraints of Scoped Types. A
number of types and syntactic contexts, such as Strings and inheritance declarations, are
deemed “safe” (safeNodes on line 3, definition omitted) and can be used in any con-
text. Lines 4-5 ensure that top level gates are only visible in the heap. Lines 7-8 ensure
that a gate is only visible in its parent package. Lines 10-11 ensure that the visibility of
a scoped type is limited to its defining package and subpackages. Lines 13-16 apply ifc
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is defined within a scoped package and ensure that types used within a scoped package
are visible.

1 rule scopedTypesVisibilityDefn1(ClassDef c){
2 forall (Tree t : c){
3 where (t.type != null && !safeNode(t)){
4 where (topLevelGate(t.type)){
5 require (!scopedPackage(c.sym.packge)):
6 warning (t,"Top level gate visible only in heap"); }
7 where (innerGate(t.type)){
8 require (t.type.getSymbol.packge.owner == c.sym.packge):
9 warning (t,"gate visible only in immediate superpackage"); }

10 where (scoped(t.type)){
11 require (t.type.getSymbol.packge.isTransOwner(c.sym.packge)):
12 warning (t,"type visible only in same or subpackage"); }
13 where (scoped(c.sym.type)){
14 require (scopedPackage(t.type.getSymbol.packge) ||
15 specialPackage(t.type.getSymbol.packge) ||
16 visibleInScopedOverride(t)):
17 warning (t,"Type not visible in scoped package."); }
18 }
19 }
20 }

We restrict widening of scoped types with the following rule. It states that if we are
trying to widen a scoped type, then the target must be declared in the same scoped pack-
age, and if the type is a gate widening disallowed altogether. ThesafeWidening-
Location predicate is an escape hatch that allows annotations that override the default
rules.

1 rule scopedTypesCastingDef2(a <: b @ pos){
2 where (!safeWideningLocation(pos)){
3 where (scoped(a)){
4 require (a.getSymbol.packge == b.getSymbol.packge) :
5 warning (pos,"Illegal scoped type widening."); }
6 where (gate(a)){
7 require (b.isSameType(a)) :
8 warning (pos,"May not widen gate."); }
9 }

10 }

JAVA COP allows users to extend the Scoped Types specification with additional
restrictions. It is thus possible to use JAVA COP to restrict the set of allowed programs
further. The prototype implementation has one restriction, though, it does not support
AspectJ syntax. JAVA COP is thus not able to validate the implementation of aspects.
As long as aspects remain simple and declarative, this will not be a problem.
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3.2 Instrumentation and Virtual Machine Support

The implementation of STARS relies on a small number of changes to a real-time Java
virtual machine. In our case, we needed only add 18 lines to the Ovm framework [2]
and 105 of lines of AspectJ to provide the needed functionality.

The added functionality consists of the addition of three new methods to the abstract
classMemoryArea . These methods expose different parts of the implementation of
theMemoryArea.enter() . TheSTARSenter() method increments the reference
count associated to the area, changes allocation context and returns an opaque reference
to the VM’s representation of the allocation context before the change.STARSexit()
leaves a memory area, possibly reclaiming its contents and restores the previous allo-
cation context passed in as argument.STARSrethrow() is used to leave a memory
area with an exception. Three methods of the classLibraryImports which medi-
ates between the user domain and the VM’s executive were made public. They are:
setCurrentArea() to change the allocation context,getCurrentArea() to
obtain the allocation context for the current thread, andareaOf() to obtain the area
in which an object was allocated. All of these methods operate on opaque references.

1 Opaque MemoryArea.STARSenter();
2 void MemoryArea.STARSrethrow(Opaque,Throwable);
3 void MemoryArea.STARSexit(Opaque area);
4

5 static Opaque LibraryImports.setCurrentArea(Opaque area);
6 static Opaque LibraryImports.getCurrentArea();
7 static Opaque LibraryImports.areaOf(Object ref);

We show two key advices from theScopedAspect introduced in Figure 5. The
first advice executes before the instance initializer of any scoped class or array (lines
1-4). This advice obtains the area ofo – which is the object performing the allocation
– and sets the allocation context to that area. The reasoning is that if we are executing a
new then the target class must be visible. We thus ensure that it is co-located.

1 before (Object o): AllocInScope(o) {
2 return LibraryImports
3 .setCurrentArea(LibraryImports.areaOf(o));
4 }

We use the second advice to modify the behaviour of any call to a gate (recall that these
can only originate from the immediate parent package). Thisaround advice uses the
memory region field of the gate to change allocation context. When the method returns
we restore the previous area.

1 void around (Gate g) : GateCall(g) {
2 Opaque x = g.mem.STARSenter();
3 try {
4 try {
5 proceed(g);
6 } catch (Throwable e) { g.mem.STARSrethrow(x, e); }
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7 } finally { g.mem.STARSexit(x); }
8 }

3.3 Extensions and Restrictions

We have found that, for practical reasons, a small numbers of adjustments needed to be
made to the core of the scoped type system.

Intrinsics. Some important features of the standard Java libraries are presented as static
methods on JDK classes. Invoking static methods from a scoped package, and espe-
cially ones that are not defined in the current package, is illegal. This is too restrictive
and we relaxed the JAVA COP specification to allow calls to static methods in the fol-
lowing classesSystem , Double , Float , Integer , Long , Math , andNumber.
Moreover, we have chosen to permit the use ofjava.lang.String in scoped pack-
ages. Whether this is wise is debatable – for debugging purposes it is certainly useful
to be able to construct messages, but it opens up an opportunity for runtime memory
errors. It is conceivable that the JAVA COP rules will be tightened in the future to better
track the use of scope allocated strings.

Exceptions. All subclasses ofThrowable are allowed in a scoped package. This is
safe within the confines of standard use of exceptions. If an exception is allocated and
thrown within a scoped package, it is either caught by a handler within that package or
escape out of the memory area. In which case it will be caught by the around advice
at the gate boundary andSTARSrethrow will allocate a RTSJThrowBoundary-
Error object in the parent scope and rethrow the newly allocated error. One drawback
of this rule is that a memory error could occur if a programmer managed to return/assign
a scope-allocated error object to a parent area. Luckily there is a simple solution that
catches most reasonable use-cases. We define a JAVA COP rule that allows exceptions
to be created only if they are within athrow statement.

1 declare treeVisInScoped(Tree t){
2 require (NewClass n, Throw th;
3 n <- env.tree && th<-env.next.tree){
4 require (th.expr == n);
5 require (t == n.clazz);
6 }
7 }

Annotations. We found that in rare cases it may be necessary to let users override
the scoped type system — typically where (library) code is clearly correct, but where it
fails the conservative Scoped Types checker. For this we provide two Java 5 annotations
that are recognized by the JAVA COP rules.@WidenScoped permits to declare that an
expression which performs an otherwise illegal widening is deemed safe.@MakeVis-
ible takes a type and makes it visible within a class or method.
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Reflection. In the current implementation we assume that reflection is not used to
manipulate scoped types. But a better solution would be to have reflection enforce the
STARS semantics. This can be achieved by making the implementation of reflection
scope-aware. Of course, whether reflection should be used in a hard real-time system,
considering its impact on compiler analysis and optimization is open for discussion.

Native methods. Native methods are an issue for safety. This is nothing new, even
normal Java virtual machines depend on the correctness of the implementation of native
methods for type safety. We take the approach that native methods are disallowed unless
explicitly permitted in a JAVA COP specification.

Finalizers. While the STARS prototype allows finalizers, we advocate that they should
not be used in scoped packages. This because there is a well-known pathological case
where aNoHeapRealtimeThread can end up blocking for the garbage collector
due to the interplay of finalization and access to scope byRealtimeThread s. This
constraint is not part of the basic set of JAVA COP rules. Instead we add it as a user-
defined extension to the rule set. This is done by the following rule:

1 rule nofinalizers(MethodDef m){
2 where (m.name.equals("finalize") && m.params.length == 0){
3 require (ClassSymbol c; c <- m.sym.owner) {
4 require (!scopedPackage(c.packge)):
5 warning (m,"Scoped class may not define a finalizer");
6 }
7 }
8 }

4 Case Study: A Real-time Collision Detector

We conducted a case study to demonstrate the relative benefits of STARS. The software
system used in this experiment is modeling a real-timecollision detector(or CD). The
collision detector algorithm is about 25K Loc and was originally written with the Real-
time Specification for Java. As a proof-of-concept for our proposal, we refactored the
CD to abide by the scoped type discipline and to use aspects.

The architecture of the STARS version of the CD is given in Fig. 11. The appli-
cation has three threads, a plain Java thread running in the heap to generate simulated
workloads, a 5Hz thread whose job is to communicate results of the algorithm to an
output device and finally a 10HzNoHeapRealtimeThread which periodically ac-
quires a data frame with positions of aircrafts from simulated sensors. The system must
detect collision before they happen. The numbers of planes, airports, and nature of flight
restrictions are variables to the system.

The refactoring was done in three stages. First, we designed a scope structure for
the program based on theScopedMemory areas used in the CD. Second, we moved
classes amongst packages so that the STARS-CD package structure matched the scope
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structure. Third, we removed or replaced explicit RTSJ memory management idioms
with equivalent constructs of our model.

Fig. 12 compares the package structure of the two versions. In the original CD the
packagesatc andcommand were responsible of computing trajectories based on a
user-defined specification. They were not affected by the refactoring. Packagedetec-
tor contained all of the RTSJ code as well the program’smain() . Finally util
contained a number of general purpose utility classes. We split the code in thede-
tector package in four groups. The packageheap contains code that runs in the
heap–this is the main and the data reporting thread. The packageimm contains classes
that will be allocated in immortal memory and thus never reclaimed. Below immor-

imm

imm.runner

imm.runner.detector

heap

 Simulation
(Java Thread)Printer

Thread
(5Hz)

Dector
Thread
(10Hz)

StateTable

StateTable2

Imm
Frame

Vector3d HashMap

Vector3d

Runner

Detector

Fig. 11.Collision Detector. The CD uses two scoped memory areas. Two threads run in the heap:
the first simulates a workload, the second communicate with an output device. The memory hier-
archy consists ofimm (immortal memory) for the simulated workload,imm.runner for persis-
tent data, andimm.runner.detector for frame specific data.

CD packages classes Scoped CD packages classes
per package per package

atc 989 atc 989
command 21198 command 21198
util 927 util 927
detector 1041

heap 105
imm 120
imm.runner (1) 162
imm.runner.detector (5) 1587
collections (22) 8322

Fig. 12. Package structure of the CD (left) and the STARS CD (right). Number in parenthesis
indicate the classes that had to be duplicated to abide by the scoped type constraints.
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tal memory there is one scope that contains the persistent state of the application, we
defined a packageimm.runner for this. The main computation is done in the last
package,imm.runner.detector . This is the largest real-time package which con-
tains classes that are allocated and reclaimed for each period.

1 privileged aspect CDAspect extends ScopedAspect{
2

3 before (Gate g): NewGate(g) && execution (Runner. new(..)){
4 g.mem = new LTMemory(Constants.SIZE*2,Constants.SIZE*2);
5 }
6

7 before (Gate g): NewGate(g) && execution (Detector. new(..)){
8 g.mem = new LTMemory(Constants.SIZE);
9 }

10

11 void around (STARS g, Runnable r): RunInThread(r, g){
12 Thread t = new NoHeapRealtimeThread(
13 new PriorityParameters(Constants.PRIORITY),
14 new PeriodicParameters(null,
15 new RelativeTime(Constants.PERIOD, 0),
16 null, null, null),
17 null, ((Gate) g).mem, null, r);
18 t.start();
19 }
20 }

Fig. 13.Real-time Aspect for the CD. The aspect specifies the characteristics of memory areas as
well as that of the real-time thread used by the application. The CD logic does not refer to any of
the RTSJ APIs.

The entire code of the real-time aspect for the CD is given in Fig. 13. This aspect
simply declares the memory area types for theimm.runner and imm.runner.-
detector gates. Then it gives an around advice that specifies that the thread used by
the CD algorithm is aNoHeapRealtimeThread and gives appropriate scheduling
and priority parameters.

The overall size of the Scoped CD has increased because we had to duplicate some
of the utility collection classes. This duplication is due to our static constraints. A num-
ber of collection classes were used in theimm.runner package to represent persistent
state, and in theimm.runner.detector package to compute collisions. While we
could have avoided the duplication by fairly simple changes to the algorithm and the use
of problem specific collections, our goal was to look at the ‘worst-case’ scenario, so we
tried to make as few changes to the original CD as possible. The methodology used to
duplicate collection classes is straightforward: we define a scoped replacement for the
Object class and replace all occurrences ofObject in the libraries with the scoped
variant. There were some other minor changes, but these were also fairly straightfor-
ward.
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4.1 Patterns and Idioms

RTSJ programmers have adopted or developed a number of programming idioms to
manipulate scopes. After changing the structure of the original CD, we need to convert
these idioms into corresponding idioms that abide by our rules. In almost every case,
the resulting code was simpler and more general, because it could directly manipulate
standard Java objects rather than having to create and manage special RTSJ scope meta-
objects explicitly.

Scoped Run Loop.At the core of the CD is an instance of the ScopedRunLoop pattern
identified in [32]. TheRunner class creates aDetector and periodically executes
the detector’srun() method within a scope. Fig. 14 shows both the RTSJ version and
the STARS version. In the RTSJ version, the runner is aNoHeapRealtimeThread
which has in itsrun() method code to create a new scoped memory (lines 11-12)
and a run loop which repeatedly enters the scope passing a detector as argument (lines
17-18).

In the STARS version,Runner andDetector are gates to nested packages. Thus
the call torun() on line 16 will enter the memory area associated with the detec-
tor. Objects allocated while executing the method are allocated in this area. When the
method returns these objects will be reclaimed. Fig. 15 illustrates how aRunner is
started. In the RTSJ version a scoped memory area is explicitly created (lines 2-3) and
the real-time arguments are provided (lines 6-11). In the STARS version most of this
is implicit due to the fact that a runner is a gate and the use of therunInThread()
method which is advised to create a new thread. What should be noted here is that, in
this particular example, STARS separates the real-time support from the non-real-time
code.

Multiscoped Object. A multiscoped object is an object which is used in several al-
location contexts as defined in [32]. In the RTSJ CD theStateTable class keeps
persistent state and is allocated in the area that is not reclaimed on each period. This
table has one entry per plane holding the plane’s call sign and its last known position.
There is also a methodcreateMotions() invoked from the transient scope. The
class appears in Fig. 16.

This code is particularly tricky because the state table object is allocated in the
persistent area and the methodcreateMotions() is executed in the transient area
(when called by theDetector ). The object referred to bypos (line 8) is transient and
one must be careful not to store it in the parent scope. When a new plane is detected,
old is null (line 11) and a new position vector must be added to the state table. The
complication is that at that point the allocation context is that of the transient area, but
the HashMap was allocated in the persistent scope (line 2). So we must temporarily
change allocation context. This is done by defining an inner class whose sole purpose
is to create a new vector and add it to the hash map (lines 23-39). The context switch
is performed in lines 15-17 by first obtaining the area in which the StateTable was
allocated, and finally executing thePutter in that area (line 17). This code is a good
example of the intricacy of RTSJ programming.
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The scoped solution given in Fig. 17 makes things more explicit. TheStateTable
class is split in two. One class,imm.runner.StateTable , for persistent state
and a second class,imm.runner.detector.StateTable2 that has the update
method. This split makes the allocation context explicit. AStateTable2 has a ref-
erence to the persistent state table. ThecreateMotions() method is split in two
parts, one that runs in the transient area (lines 23-30) and the other that performs the
update to the persistent data (lines 8-14).

1 public class Runner extends
2 NoHeapRealtimeThread {
3

4 public Runner(
5 PriorityParameters r,
6 PeriodicParameters p,
7 MemoryArea m) {
8 super(r, p, m);
9 }

10 public void run() {
11 final LTMemory cdmem =
12 new LTMemory(CDSIZE,CDIZE);
13 StateTable st =
14 new StateTable();
15 Detector cd =
16 new Detector(st, SIZE);
17 while (waitForNextPeriod())
18 cdmem.enter(cd);
19 }
20 }

1 public class Runner
2 extends Gate {
3

4

5

6

7

8

9

10 public void run() {
11 StateTable st =
12 new StateTable();
13 Detector cd =
14 new Detector(st, SIZE);
15 while (waitForNextPeriod())
16 cd.run();
17 }
18 }
19

20

Fig. 14. Scoped Run Loop Example. The Runner class: RTSJ version (on the left) and Scoped
version (on the right).

1 public void run() {
2 LTMemory memory =
3 new LTMemory(MSZ, MSZ);
4 NoHeapRealtimeThread rt =
5 new Runner( new PriorityParameters(P),
6 new PeriodicParameters(null,
7 new RelativeTime(PER,0),
8 new RelativeTime(5,0),
9 new RelativeTime(50,0),

10 null,null),
11 memory);
12 rt.start();
13 }

1 public void run() {
2 Runner rt =
3 new Runner();
4 runInThread(rt);
5 }
6

7

8

9

10

11

12

13

Fig. 15.Starting up. Theimm.Imm.run() method: RTSJ version (left-hand side) and Scoped
version (right-hand side).
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Since our type system does not permit references to subpackages the arguments to
StateTable.put() are primitive. The most displeasing aspect of the refactoring is
that we had to duplicate theVector3d class - there are now two identical versions - in
eachimm.runner and imm.runner.detector . We are considering extensions
to the type system to remedy this situation.

4.2 Performance Evaluation

We now compare the performance of three versions of the CD: with the RTSJ, with
STARS, and with a real-time garbage collector. The latter was obtained by ignoring the
STARS annotations, with all objects allocated in the heap. The benchmarks were run on
an AMD Athlon(TM) XP1900+ running at 1.6GHz, with 1GB of memory. The operat-
ing system is Real-time Linux with a kernel release number of 2.4.7- timesys-3.1.214.

1 class StateTable {
2 HashMap prev = new HashMap();
3 Putter putter = new Putter();
4

5 List createMotions(Frame f) {
6 List ret = new LinkedList();
7 for (...) {
8 Vector3d pos = new Vector3d();
9 Aircraft craft = iter.next(newpos);

10 ...
11 Vector3d old = (Vector3d) prev.get(craft);
12 if (old == null) {
13 putter.c = craft;
14 putter.v = pos;
15 MemoryArea current =
16 MemoryArea.getMemoryArea(this);
17 mem.executeInArea(putter);
18 }
19 }
20 return ret;
21 }
22

23 class Putter implements Runnable {
24 Aircraft c;
25 Vector3d v;
26 public void run() {
27 prev.put(c, new Vector3d(v));
28 }
29 }
30 }

Fig. 16.RTSJ StateTable. This is an example of a RTSJ multiscoped object – an instance of class
allocated in one scope but with some of its methods executing in a child scope. Inspection of the
code does not reveal in which scopecreateMotions() will be run. It is thus incumbent on
the programmer to make sure that the method will behave correctly in any context.
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We rely on AspectJ 1.5 as our weaver. We use the Ovm virtual machine framework [5]
with ahead-of-time compilation (“engine=j2c, build=run”). The GCC 4.0.1 compiler is
used for native code generation. The STARS VM was built with dynamic read and write
barriers turned off. The application consists of three threads, 10Hz, 5Hz, and plain Java.
Priority preemptive scheduling is performed by the RTSJVM.

Fig. 18 shows the difference in running time between the three versions of the CD.
The x-axis plots input frames while the x-axis gives the time the application took to
process that frame of input. The per-frame processing time depends on the relative
positions of the planes. Thus some frames are processed faster than others. For instance
all graphs show a slight increase in processing time for frames 190-200, this is normal
application behavior.

For each configuration of the virtual machine, we list median, average and maxi-
mum per-frame processing times. Minimum times are not meaningful as they are domi-
nated by virtual machine-specific overheads. With Scoped Memory, the maximum pro-

1 package imm.runner;
2 public class Vector3d { ... }
3

4 public class StateTable {
5 HashMap prev = new HashMap();
6

7 void put(Aircraft craft, float x, float y, float z) {
8 Vector3d old = prev.get(craft);
9 if (old==null)

10 prev.put(craft, new Vector3d(x, y, z));
11 else
12 old.set(x, y, z);
13 }
14 }
15

16 package imm.runner.detector;
17 class Vector3d { ... }
18

19 class StateTable2 {
20 StateTable table;
21

22 List createMotions(Frame f) {
23 List ret = new LinkedList();
24 for (...) {
25 Vector3d pos = new Vector3d();
26 ...
27 table.put(craft, pos.x, pos.y, pos.z);
28 }
29 return ret;
30 }
31 }

Fig. 17.STARS StateTable. With scoped types the table is split in two. This makes the allocation
context for data and methods explicit.
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(b) STARS
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(a) Real-time GC
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Fig. 18. Performance Evaluation. Comparing the performance of the collision detection imple-
mented with (a) RTSJ, (b) STARS and (c) Java with a real-time garbage collector. We measure the
time needed to process one frame of input by a 10Hz high-priority thread. The x-axis shows input
frames and the y-axis processing time in milliseconds. The RTGC spikes at 43ms when the GC
kicks in. No deadlines are missed. The average per frame processing time of STARS is 28% less
than that of RTSJ and RTGC. Variations in processing time are due to the nature of the algorithm.
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cessing time is 21 ms, considerably higher than with STARS which has only a 15 ms
worst case time. The extra costs come from the read and write barriers that must be run
by the virtual machine. Clearly these overheads are application specific – reference in-
tensive computations will pay a higher price than computations that mostly manipulate
primitive values.

The real-time GC number are interesting. The collector used in this experiment is
a time-based collector modeled on the Metronome [3, 4]. The collector kicks in when
the program’s available memory is less than a specified threshold. Once the collector is
running, it will interrupt the application for at most 1ms at a time. But, the processing of
a frame can be interrupted numerous times. This explains the peak at 42 ms. During the
processing of one frame, the application was interrupted every other ms by the collector
thus doubling processing time. It is noteworthy that the average median processing time
is higher with RTGC than with STARS, this is due to the additional barriers required by
the collector.

The results suggest that STARS outperforms both RTSJ and Real-time GC. On av-
erage, STARS is about 28% faster per frame than RTSJ and RTGC. This means that the
overhead of before advice attached to every allocation is negligible. This is only a single
data point, we feel that more aggressive barrier elimination could reduce the overhead
of RTSJ programs and that the performance of our RTGC is likely not yet optimal.
Nevertheless, the data presented here suggested that there is a potentially significant
performance benefit in adopting STARS.

5 The SJ calculus

To gain confidence in the programming model underlying our proposal, we introduce
the SJ calculus, a sparse imperative and concurrent object calculus, modeled after Feath-
erweight Java [24], in which scopes are first-class values. SJ formalizes the type con-
finement rules of Scoped Type in terms of a type system. Our proof of type soundness
gives us the guarantee that confinement cannot be breached during execution of a well-
typed program. We can then proceed to prove that the shape of the scope hierarchy is
restricted to tree. And, finally, that deallocation of a scope will not result in dangling
references. SJ is a simple object calculus, to keep the semantics concise we have omit-
ted some features that are not essential to the main results. These features include static
methods, synchronization, access modifiers, and down-cast expressions. Some specific
features related to scoped memory such as the size and the type of the memory area
(linear or variable allocation time) are also omitted.

5.1 Syntax and Types

The syntax of the SJ calculus, Figure 19, draws on our previous work [40]. The formal-
ism and syntax is based on the Featherweight Java (FJ) system which has been widely
adopted as a vehicle of language research. SJ has four kinds of class:immortal classes,
scoped classes, gate classes, andheap classes. Classes belong to packages, which can
be nested in an arbitrary package hierarchy. Immortal classes are in the packageimm;
mixtures of scoped and gate classes are in thescoped packages, which are subpackages
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of imm; and the heap classes are in any other packages. A class in a scoped package is a
gate class if its short name matches the name of the package (case insensitive) and any
other classes in the package are scoped classes. We add an assignment expression and
an expression for creating a new thread of control.

We take metavariablesC, D to range over classes,M to range over methods,K over
constructors, andf andx to range over fields and variables (including parameters and
the pseudo variablethis), respectively. We also useP for package names,e for ex-
pressions and̀ for memory references. We use over-bar to represent a finite ordered
sequence, for instance,f representsf1 f2 . . . fn. The terml . l′ denotes sequence con-
catenation. The calculus has a call-by-value semantics. The expression[ v/vi ]v yields a
sequence identical tov except in theith field which is set tov. We use the usual dot
notation to represent nested packages. That is, the packagep.q is a subpackage ofp.
The presentation of the calculus inherits some of the syntactic oddities of FJ, soe e is a
short hand fore1 . . . en e, andm(C x) stands form(C1 x1, . . . , Cn xn).

5.2 Semantics

In SJ, each gate object represents a distinct scoped memory area and when no thread is
executing methods in the gate object, all of the objects that were allocated within the
associated scope are reclaimed. While the package hierarchy imposes a static structure
on scopes, gate objects allow multiple scope instances to be created at runtime. The
main restriction imposed by SJ is that a gate can only allocate objects of scoped classes
belonging to the same package and gates defined in immediate subpackages. When this
restriction is combined with confinement invariants that prevents gate objects leaking
from their parent package, we obtain the key property for scoped memory management,
namely the restriction that threads enter scopes in the same order as the nesting relation
of the packages containing the gate classes.

As in Featherweight Java, the semantics assumes the existence of a class table con-
taining the definitions of all classes. We had to add a storeσ and a collection of threads
P labeled by distinct identifierst. Objects are of the formC`(v), whereC is a class,v
are the values of the fields, and` is the object representing the memory scope in which
it was allocated. The storeσ is a sequence,C`(v), of objects, each denoted by a dis-
tinct label`i. We assume thatσ contains an object̀heap representing heap memory and
an object̀ imm representing immortal memory. Fig. 20 defines a number of auxiliaries
relations. The partial functionallocScopeσ(`) retrieves the allocation scope when the

L ::= class P.C / D { C f; M }

M ::= C m(C x) { return e; }

e ::= x | e.f | e.m(e) | new C() | e.f := e | spawn e | v

P ::= imm.P′ | P′ P′ ::= p | p.P′ v ::= ` | null

Fig. 19.Syntax of the SJ calculus.



30 Authors Suppressed Due to Excessive Length

Allocation Scope:

Givenσ(`) = C
`′(v), allocScopeσ(`) = ` if C is a gate, allocScopeσ(`) = `′ otherwise.

Deallocation:

deallocate(σ, `0) = {(`, C`′(v)) ∈ σ | `′ 6= `0}

Evaluation context:

E[◦] ::= ◦ | E[◦].m(e) | v.m(. . . , vi−1, E[◦], ei+1 . . .)

| E[◦].fi | E[◦].fi := e | v.fi := E[◦]

Scope reference counts:

refcount(`, t[ ` e ] | P ′) = count`(`) + refcount(`, P ′)

refcount(`, ∅) = 0 count`(∅) = 0

count`(` . `) = 1 + count`(`) count`(` . `′) = count`(`)

Fig. 20.Auxiliary definitions.

σ(`) = C`′(v) fields(C) = (C f)

σ, `0 `.fi → σ, `0 vi
(R-FIELD)

σ(`) = C`′(v) fields(C) = (C f) σ′ = σ[` 7→ C`′([ v/viv])]

σ, `0 `.fi := v → σ′, `0 v
(R-UPDATE)

if C is immortal type,̀ ′ = `imm, else if it is heap type,̀′ = `heap
else`′ = allocScopeσ(`0) ` fresh σ′ = σ[` 7→ C`′(null)]

σ, `0 new C() → σ′, `0 `
(R-NEW)

σ(`) = C`′(v′) mbody(m, C) = (x, e)

σ, `0 `.m(v) → σ, ` [ v/x, /̀this]e
(R-INVK )

Fig. 21.Expression evaluation.

current receiver object is̀. That is, the allocation scope is̀if σ(`) is a gate object,
and otherwise, it is the scope whereσ(`) is allocated. The functiondeallocate(σ, `0)
remove objects allocated in the scope corresponding to`0 from the storeσ. An evalua-
tion context (Fig. 20) is an expressionE[◦] with a hole that can be filled in with another
expression of proper type. An expressione0 is written asE[e] only if e is in the form
of v, v.f, v.f := v′, v.m(v), or spawn e. For a non-value expressione0, there exists an
unique evaluation contextE[◦] such thate0 = E[e] ande is not a value. Evaluation
contexts do not include the body ofspawn . The partial functionrefcount(`, P ) returns
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P = P ′′ | t[ ` e . ` E[e] ] P ′ = P ′′ | t[ ` e . ` E[e′] ]
e 6= `′.m(v) σ, ` e → σ′, ` e′

σ, P ⇒ σ′, P ′ (G-STEP)

P = P ′′ | t[ ` e . ` E[e] ] P ′ = P ′′ | t[ ` e . ` E[e] . `′ e′ ]
e = `′.m(v) σ, ` e → σ, `′ e′

σ, P ⇒ σ, P ′ (G-ENTER)

P = P ′′ | t[ ` e . ` E[e] . `′ v ] P ′ = P ′′ | t[ ` e . ` E[v] ] σ(`′) = C`0(v)

if C is not a gate orrefcount(`′, P ′) 6= 0, thenσ′ = σ,

elseσ′′ = deallocate(σ, `′) σ′ = σ′′[`′ 7→ C`0(null)]

σ, P ⇒ σ′, P ′ (G-RETURN)

P = P ′′ | t[ ` e . ` e ] P ′ = P ′′ | t[ ` e . ` E[`th] ] | t′[ ` `th . ` e′ ]
e = E[spawn e′] t′ fresh

σ, P ⇒ σ, P ′ (G-SPAWN)

Fig. 22.Computation rules.

the number of times that the threads of programP have entered the scope corresponding
to the gate object̀.

The dynamics semantics of SJ is split in two: expression evaluation rules given in
Fig. 21 and the computation rules in Fig. 22.
Expression rules. These evaluation rules consider only operations performed within
a single thread. The evaluation relation has the formσ, ` e → σ′, `′ e′ whereσ is
the initial store,̀ is the reference to object currently executing, ande the expression
to evaluate. The reduction rules field select (R-FIELD), field update (R-UPDATE), and
method invocation (R-INVK ) are not surprising, wherembody(m, C) returns parameters
x and method bodye of m when it is invoked on an object of the typeC. The instantiation
rule (R-NEW) finds the right scope to allocate the object about to be created. If the new
object typeC is heap type, then the scope is`heap, if C is immortal type, then the scope
is `imm, otherwise, the allocation scope is the current scope of the thread. The fields of
C must be initialized to null. Finally the store is updated with a fresh reference` bound
to the newly allocated object. The helper functioninit(C) is defined in Figure 25.
Computation rules. The computation rules are of the formσ, P ⇒ σ′, P ′ whereσ
is a store andP is a set of threads. Each threadt[ ` e ] in P has a distinct labelt and a
runtime call stack which is a list of receiver-expression pairs`, e.

Rule (G-STEP) is simple, it picks one thread for execution and evaluates the expres-
sion E[e] on the top of the thread’s stack. Note that this rule applies whene is not a
method invocation.

Rule (G-ENTER) evaluates a threadt[ ` e . ` e ] containing a method calle = E[e0]
ande0 = `′.m(v). It creates a new stack frame for the body of the method,e′, and the
result is a stack̀ e . ` E[e0] . `′ e′.
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Γ, Σ ` x : Γ (x) (T-VAR)

Γ, Σ ` ` : Σ(`) (T-LOC)

Γ, Σ ` e0 : C fields(C) = (C f)

Γ, Σ ` e0.fi : Ci
(T-FIELD)

Γ, Σ ` e0 : C0 mdef (m, C0) = C′0 mtype(m, C′0) = C→ C

Γ, Σ ` e : D D � C C0 � C′0

Γ, Σ ` e0.m(e) : C
(T-INVK)

Γ, Σ ` new C() : C (T-NEW)

Γ, Σ ` e0 : C0 fields(C0) = (C f) Γ, Σ ` e : C C � Ci

Γ, Σ ` e0.fi = e : Ci
(T-UPDATE)

Γ, Σ ` e : Thread

Γ, Σ ` spawn e : Thread
(T-SPAWN)

Fig. 23.Expression typing.

If a thread’s stack has the form̀e . ` E[e] . `′ v, then by Rule (G-RETURN), the
thread can pop the stack frame and continue execution withv as the resulted value of
the method calle. Note that inE[e], if e is not a value, then the evaluation context
E is unique. Thus, the replacement is unambiguous. In addition, if the receiver`′ is a
gate object and no thread is using that gate (i.e. refcount(`′, P ) = 0), then by Rule
(G-RETURN), the objects allocated in the scope corresponding to`′ are deallocated and
the fields of̀ ′ are reset to their initial values.

Rule (G-SPAWN) evaluates a threadt[ ` e . ` e ] containing a spawn expressione =
E[spawn e0]. The value of the spawn expression ine is the distinguished̀th which
is a unique, global reference to an object of classThread and we assume that`th is
allocated in immortal memory. A new threadt′ is created to evaluatèe0. The new
thread is started with a call stack` `th that matches the call stack of the original thread
t to ensure that scope reference counts are accurate.

5.3 Type Rules

The typing rules are shown in Figure 23 and 24. and the related auxiliary functions
are defined in Figure 25. Some auxiliary functions used in typing rules are defined as
follows: fields(C) returns the list of field declarations in the classC (including the in-
herited fields) in the form ofC f; mdef (m, C) returns the defining class of the method
m by searching the class hierarchy upward fromC; mtype(m, C) returns the type signa-
tureC → C′ of the methodm called on the typeC, whereC, C′ are the parameter and
return types. The type judgments are of the formΓ,Σ ` e : C, whereΓ is the type
environment of variables andΣ is the type environment of object labels.
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Store Typing:

dom(Σ) = dom(σ)

∀` ∈ dom(σ) . Σ ` σ(`) ∧ Σ(`) = C if σ(`) = C`0(v)

Σ ` σ
(T-STORE)

fields(C) = (C f) ∅, Σ ` v : D D � C

if C is heap type, theǹ′ = `heap else ifC is immortal type,
then`′ = `imm elseC is either scoped inΣ(`)’s package

or a gate in its immediate subpackage

Σ ` C` (v)
(T-STORELOC)

Method typing:

Γ = x : C, this : C0 override(m, D, C→ C) Γ, ∅ ` e : C′

C′ � C Γ ` visible(e, C)

C m(C x) { return e; } OK IN C0 / D
(T-METHOD)

Class typing:

M OK IN C / D visible(CD, C) D � C

class P.C / D { C f; M } OK
(T-CLASS)

Fig. 24.Type rules of store, method, and class.

The subtyping relation<: is a reflexive and transitive closure of the relation that
C <: C′ if the classC extends the classC′. We define the partial order� on types
to limit the variables that can refer to scoped objects and gates;C � C′ is defined if
C <: C′, and in addition, ifC is a scoped type, thenC′ is a scoped type in the same
package, and ifC is a gate type, thenC = C′. If C � C′, then we say thatC is ascope-
safesubtype ofC′ and the widening of a reference from the typeC to C′ is scope-safe.

By Rules (T-UPDATE) and (T-INVK ), the reference widening in the field assign-
ments and parameters passing isscope-safe. Rule (T-STORE) of the formΣ ` σ says
that object storeσ is well typed, if the type environmentΣ has the same domain asσ
and for each object label` in the domain ofσ, Σ(`) is equal to the type ofσ(`) and
σ(`) must also be well-typed. Ifσ(`) = C`′

(v), then by Rule (T-STORELOC), an object
C`′

(v) is well-typed, if the types ofv arescope-safesubtypes of the field types.

If a method in the classC0 is well-typed, then the method bodye is well-typed
by the expression typing rules, the type of the method body is ascope-safesubtype of
the return type, and in addition, the method body must be visible inC0 as defined by
the judgmentΓ ` visible(e, C0) by the expression visibility rules in Figure 26. The
predicateoverride(m, C0, C→ C) is true if either the methodm is not accessible inC0

or the type signature returned bymdef (m, C0) is the same asC → C. In the typing rule
for class (T-CLASS), we require that in a classC, and the types of the fields and the
base class must be visible inC. Also, all methods in a class must be well-typed by Rule
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Initializer look-up:

init(Object) = ()

CT (C) = class P.C / D { C f; K M } init(D) = new D′()

K = C() {super(); this.f := new C′(); }
init(C) = new D′(), new C′()

Field look-up:

fields(Object) = ()

CT (C) = class P.C / C′ { C f; K M } fields(C′) = (C
′
g)

fields(C) = (C
′
g, C f)

Method definition lookup:

CT (C) = class P.C / C′ { C f; K M } m is defined inM

mdef (m, C) = C

CT (C) = class P.C / C′ { C f; K M } m is not defined inM

mdef (m, C) = mdef (m, C′)

Method type lookup:

mdef (m, C) = C′ CT (C′) = class P.C′ / C′′ { C f; K M }

D m(D x) { return e; } ∈ M

mtype(m, C) = D→ D

Method body look-up:

mdef (m, C) = C′ CT (C′) = class P.C′ / C′′ { C f; K M }

D m(D x) { return e; } ∈ M

mbody(m, C) = (x, e)

Valid method overriding

m not accessible inC0 or
mtype(m, C0) = D→ D C, C = (D, D)

override(m, C0, C→ C)

Fig. 25.Auxiliary functions.
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(T-METHOD). Note that in (T-CLASS) we abuse notation by writingvisible(C, C) to
assert that all types in theC are visible inC.

Type visibility:

visible(C, C0) iff


eitherC is a scoped type and

in the same or the super-package ofC0

or C is a gate type and
in the immediate subpackage ofC0

Static expression visibility:

Γ ` visible(this, C0)

Γ, ∅ ` e : C visible(C, C0)

∀e′ ∈ subexp(e) . Γ ` visible(e′, C0)

Γ ` visible(e, C0)

subexp(e) =


∅ if e = x | v | new C()
{e0, e} if e = e0.m(e)
{e0, e1} if e = e0.fi := e1
{e0} if e = e0.fi | spawn e0 | reset e0

Fig. 26.Type and expression visibility.

Visibility of types and expressions. The static constraints in our model are mostly
to restrict widening of references, and also to limit the accessibility of expressions by
their types. For example, an expression of scoped typeC is only visible in the defining
package ofC and its subpackages. We define a relation on types –visible(C, C0) (type
C is visible totypeC0), which encodes the SJ access control rules:

– a scoped typeC defined in packagep is visible to the classes defined inp and its
subpackages;

– a gate typeC in packagep is only visible to the classes defined in the immediate
superpackage ofp

– an immortal class type inimm is visible to any classes; and
– a heap class type is only visible to other heap classes.

One slightly surprising implication of this definition is that a gate type is not visible in
its own class definition. Thus a gate classC does not contain code that refers to itself
with the exception, as we shall see later, of the pseudo variablethis which may indeed
be used to access fields and methods from within the gate class.

We illustrate the visibility relation of types with the table in Figure 27, which shows
when the types in the leftmost column is visible in the classes in the first row.

We check the method body to determine whether type visibility constraints are vi-
olated in a class. In Rule (T-METHOD), the judgmentΓ ` visible(e, C0) holds if e
of type C is visible in a classC0, which means that eithere = this or the typeC is
visible in the classC0 (i.e. visible(C, C0)), and ife = new C(e) andC is a scoped type,
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p.GateP p.ScopedP p.q.GateQ p.q.ScopedQ

p.GateP
p.ScopedP visible visible visible visible
p.q.GateQ visible visible

p.q.ScopedP visible visible

Fig. 27.The typesp.GateP , p.ScopedP are the gate and a scoped type in the packagep and
p.q.GateQ , p.q.ScopedQ are the gate and scoped type in the packagep.q . The package
p.q is a subpackage ofp. The table entries indicate whether the types in the leftmost column is
visible in the classes in first row.

thenC andC0 are in the same package, and in addition, all the subexpressions ofe are
visible inC0. We make an exception forthis because even though a gate type is visible
only to the classes of its immediate super-package, a gate object must be able to use
the variablethis for accessing its fields and calling its methods. For any scoped class,
the type of the variablethis are always visible in its class. The restriction also limits
creating new objects of the scoped classes in the current package and gate classes in the
immediate subpackages.

5.4 Properties.

The purpose of our model is to simplify the allocation of objects in scoped memory ar-
eas. Thus, we would like to statically guarantee the properties that during the evaluation
of a real-time program,

– the nesting structure of scopes remains a tree, and
– deallocation of scoped memory areas does not create dangling pointers.

In RTSJ, the nesting structure of scopes is determined by how threads enter scopes. In
our model, the scope structure is fixed by how the gate objects representing the scopes
are created. That is, if a scopea is represented by a gate object created in the scope
b, thena must be directly contained inb; moreover, the gate object representinga is
defined in the immediate subpackage of the gate object representingb. Thus, our type
system guarantees that the scopes represented by the gate objects always form a tree.
It also ensures that the threads in a program will preserve such a scope tree such that
each thread either enters the scopes already entered by the thread or enters a new scope
directly contained in the current scope of the thread. Thus, even though a scope stack
of a thread may grow indefinitely (e.g. the thread reenters the scopes already on stack),
the nesting structure of scopes resembles the nesting structure of the scoped packages
and always remains a tree.

To ensure that deallocation of scoped memory area does not create dangling point-
ers, we require that a scoped object can only access objects with the same or longer
lifetime, while a gate object can in addition access the objects allocated in the scope
that it represents. Thus, when the last thread in a scope exits, the objects in that scope
can be deallocated. The references to the deallocated objects are no longer accessible
in the program because they are only accessible to the scoped objects with the same
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or shorter lifetime and to the gate of the scope, but those scoped objects have already
been deallocated and the methods of the gate object are not being invoked. The above
accessibility constraints are enforced by SJ’s type rules, where a scoped type is acces-
sible in the classes of its defining package and the subpackages. It is possible for two
instances of the same class to be allocated in two sibling scopes (they share some parent
scope). To prevent such objects from accessing each other, we limit the access to a gate
object to itself and the classes in its immediate super-package. Consequently, an object
may only gain access to the gate of its own scope and the gates of its immediate nested
scopes and thus, it cannot reference objects in its sibling scope.

Our proof strategy for the above properties is to show that the safety invariant that
we define below is preserved in each reduction step. We also show that subject reduction
preserves the typing of programs and if a program is well-typed, safe, not terminated,
then it always makes progress. This implies that in a well-typed and safe program, the
deallocation of scoped memory area will not create dangling pointers since a program
with dangling pointers may fail to make progress,

Safety Invariant We say that an objecto cansafely accesso′ if either o′ has longer
lifetime thano or o is the gate of the scope whereo′ is allocated. A storeσ is safe if
for each label̀ defined inσ, the objectσ(`) cansafely accessthe objects referenced
in its fields. A stack framè e is safe if the objectσ(`) cansafely accessevery object
referenced ine. A programσ, P is safeif

– σ is safe and each frame in the call stack of each thread inP is safe,
– for each gate object̀, if refcount(`, P ) = 0, then objects allocated in the scope

represented bỳare not inσ, and
– for each framè e in the call stack of each thread inP , the allocation scope of̀

is either heap, immortal scope, or a scope represented by the receiver object of a
previous frame in the call stack.

Well-typed program A programσ, P is well-typed if∃Σ such thatΣ ` σ and the call
stack of each thread inP is well-typed.

GivenΣ, the call stack̀ e . ` e . `′ e′ is well-typed if

– `′ e′ is well-typed,̀ e . ` e is well-typed, and
– eithere = `th, ore = E[e0], e0 is not a value, and if∅;Σ ` e′ : C′ and∅;Σ ` e0 :
C, thenC′ � C.

Given Σ, ` e is well-typed if ` is well-typed and∃C such that∅;Σ ` e : C and
visible(e, `) (defined below) is true.

GivenΣ, Σ(`) = C0, and∅;Σ ` e : C, the constraintvisible(e, `) is true if

– eithere = ` or visible(C, C0),
– if e = new C() andC is a scoped type, thenC andC0 are in the same package, and
– for each subexpressione′ of e, visible(e′, `) is true.

An expressione contains a null pointer exception if it has the form

null.m(v) | null.f | null.f := v
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Lemma 1 (Subject Reduction).If σ, P is well-typed, safe, andσ, P ⇒ σ′, P ′, then
σ′, P ′ is well-typed and safe.

We say that a thread inP is terminated if it has the formt[ `0 v ] or it contains a null
pointer exception.

Lemma 2 (Progress).If σ, P is well-typed and not all threads inP have terminated,
then there existsσ′, P ′ such thatσ, P ⇒ σ′, P ′.
We say that an irreducible programσ, P is stuck ifP contains a non-terminated thread.
In Theorem 1, we prove that if a program is well-typed, then it will not get stuck. As
usual,⇒∗ is the transitive and reflexive closure of⇒.

Theorem 1. If σ, P is well-typed, safe, andσ, P ⇒∗ σ′, P ′, thenσ′, P ′ is not stuck.

The proofs of the key results are in appendix.

6 Discussion and Future Work

The combination of Scoped Types with Aspects is a promising means of structuring
policy with its corresponding mechanism. When a real-time program is in this form,
we can get the benefit of high level abstractions along with increased flexibility of their
key mechanisms as aspects. The approach further allows for flexible combinations of
lightweight static verification. The prototype implementation of STARS shows that the
benefits of our approach can be obtained using mostly off-the-shelf technologies, in
particular, existing aspect-oriented languages and static verifiers, and with only mini-
mal changes to a real-time Java virtual machine. There is also potential for significant
performance improvements. In our benchmark we have seen that a STARS program
may run 28% faster than the corresponding RTSJ program.

This work has illustrated how aspects can extract and localize real-time memory
management concerns. In our case study the real-time memory management and thread-
ing specific portion of the application could be extracted as a simple declarative aspect.

One of the advantages of STARS is its truly lightweight type system. So lightweight,
in fact, that one only needs make a judicious choice of package names to denote nesting
of memory regions. The attraction is that no changes are needed in the language and
tool chain, and that the rules are simple to explain. We do not attempt to sweep the costs
of adopting STARS under the rug. As we have seen in the case study, there are cases
where we had to change interfaces from objects to primitive types, thus forfeiting some
of the software engineering benefits of Java. We were forced to duplicate the code of
some common libraries in order to abide by the rules of scoped types. While there are
clear software engineering drawbacks to code duplication, the actual refactoring effort
in importing those classes was small. With adequate tool support the entire refactoring
effort took less than a day. The hard part involved discovering and disentangling the
scope structure of the programs that we were trying to refactor.

The benefits in terms of correctness can not be overemphasized. Every single prac-
titioner we have met has remarked on the difficulty of programming with RTSJ-style
scoped memory. In our own work we have encountered numerous faults due to incor-
rect scope usage. As a reaction against this complexity many RTSJ users are asking for
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real-time garbage collection. But RTGC is not suited for all applications. In the context
of safety critical systems a number of institutions are investigating restricted real-time
’profiles’ in which the flexibility of scoped memory is drastically curtailed [22]. But
even in those proposals, there are no static correctness guarantees. Considering the cost
of failure, the effort of adopting a static discipline such as the one proposed here is well
justified.

We see several areas for future work. One direction is to increase the expressiveness
of the STARS API to support different kinds of real-time systems and experiment with
more applications to further validate the approach. Another issue to be addressed is to
extend JAVA COP to support AspectJ syntax. In the current system, we are not checking
aspects for memory errors. This is acceptable as long as aspects remain simple and
declarative, but real-time aspects may become more complex as we extend STARS,
and their static verification will become a more pressing concern. Finally we want to
investigate extensions to the type system to reduce, or eliminate, the need for code
duplication.
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Appendix
This appendix contains proofs of the main results of this article.

Lemma 3. If σ, `0 e→ σ′, `′0 e′, ∃Σ such thatσ and`0 e are well-typed and safe, and
∅;Σ ` e : C, then∃Σ′ such thatσ′ and`′0 e′ are well-typed and safe,∅;Σ′ ` e′ : C′,
andC′ � C.

Proof. 1. Supposee = `.fi ande′ = vi, whereσ(`) = C`′
(v), fields(C) = (C f). Since

σ is well-typed, the type ofvi has to be a scope-safe subtype ofCi. By the assumption
that`0 e is well-typed, it follows thatvisible(e, `0). It means that the type of̀.fi – C
must be visible to the class of`0. By Rule (T-Field),C = Ci. Since the type ofvi is
a scope-safe subtype ofCi, the type ofvi is visible to the class of̀0. Thus, we have
visible(e′, `0).

By assumption, it is safe for̀0 to access̀ and it is safe for̀ to accessvi. If ` is a
scoped object, theǹ0 can safely accessvi becausevi must be in the same or an outer
scope of̀ . If ` is a gate object, then there are three possibilities: (1)`0 = `. (2) `0 is in
a scope directly enclosing the scope of` andvi is in the outer scope of̀. In this case,
`0 can safely accessvi since the latter is in the same or an outer scope of`0. (3) `0 is
in a scope directly enclosing the scope of` andvi is in the scope of̀. This case can be
ruled out by the fact that the type ofvi must be visible to the class of`0.

2. Supposee = `.fi := v ande′ = v, whereσ(`) = C`′
(v), fields(C) = (C f), and

σ′ = σ[` 7→ C`′
([ v/vi ]v]). By assumption and Rule (T-Update),v is well-typed and its

type is a scope-safe subtype ofCi. Thus,σ′ is well-typed. Also by assumption,`0 can
safely access̀ andv. Based on Rule (T-Class),Ci must be visible to the class̀and
hence, the type ofv must be visible to the class̀as well. Therefore,v must be in the
same or an outer scope of` andσ′ is safe.

3. Supposee = new C(), e′ = `, andσ′ = σ[` 7→ C`′
(null)], where`′ = `heap

if C is a heap type,̀ ′ = `imm if C is an immortal class type, and otherwise`′ =
allocScopeσ(`0). By assumption, we havevisible(e, `0), and henceC must be in the
package of the class of`0 or a gate in its subpackage. IfC is not a heap or immortal
class type, theǹ′ is the gate representing the allocation scope of`0, and hence,C must
either be scoped in the package of the class of`′ or a gate in its subpackage, Thus,∃Σ′

such thatσ′ is well-typed andσ′ is safe.
4. Supposee = `.m(v) ande′ = [ v/x, `/this]e0, wherembody(m, C0) = (x, e0)

andσ(`) = C`′

0 (v′). We need to show that̀ e′ is well-typed and safe. Sincee and
the methodm are well-typed, by Rules (T-Method) and (T-Invk), it is straightforward to
show by induction that∅;Σ ` e′ : C′ andC′ � C. The object labels ine′ arev and`.
Supposem is defined in classC′0 whereC0 <: C′0. From Rule (T-Method), the parameter
types ofm are all visible toC′0. By Rule (T-Invk),C0 � C′0, which means thatC0 and
C′0 are the same class or in the same package. Thus, the parameter types ofm are visible
to C0 as well. Again, by Rule (T-Invk), the type ofvi is scope-safe subtype of the type
of the parameterxi for all i. Thus, the types ofv are visible toC0. Consequently, for
each object label̀′ in e′, either it is` or its type is visible to the type of̀. Therefore,
we havevisible(e′, `) and` e′ is well-typed. By assumption,`0 can safely accessv and
`. From earlier argument, the types ofv are visible to the type of̀. Thus,v can only be
allocated in the same or outer scopes of` and` can safely accessv. Thereforè e′ is
safe as well.



STARS for Real-time Java Memory Management 43

Proof of Lemma 1 (Subject Reduction)If σ, P is well-typed, safe, andσ, P ⇒ σ′, P ′,
thenσ′, P ′ is well-typed and safe.

Proof. 1. SupposeP = P ′′ | t[ ` e . ` E[e] ] P ′ = P ′′ | t[ ` e . ` E[e′] ], wheree 6=
`′.m(v) andσ, ` e → σ′, ` e′. From Lemma 3,σ′ and` e′ are well-typed and safe, and
the type ofe′ is a scope-safe subtype of the type ofe. It is straightforward to show by
induction thatE[e′] is well-typed and its type is a scope-safe subtype ofE[e]. Thus,
`E[e′] is well-typed and safe, and consequentlyσ′, P ′ is well-typed and safe.

2. SupposeP = P ′′ | t[ ` e . ` E[e] ] andP ′ = P ′′ | t[ ` e . ` E[e] . `′ e′ ], where
e = `′.m(v) andσ, ` e → σ, `′ e′. From Lemma 3,̀ ′ e′ is well-typed, safe, and the
type ofe′ is a scope-safe subtype of the type ofe. Thus,σ, P ′ is well-typed. If the type
of `′ is not a heap or immortal type, then the allocation scope of`′ must be represented
by a gate object. Sinceσ, P is safe,̀ can safely access̀′ and`′ must be allocated in the
same or outer scope of`′. Thus, by induction, the allocation scope of`′ is represented
by the receiver object of a frame in the call stack ofP . Therefore,σ, P ′ is safe.

3. SupposeP = P ′′ | t[ ` e . ` E[e] . `′ v ] andP ′ = P ′′ | t[ ` e . ` E[v] ], where
σ(`′) = C`′′

(v). SinceP is well-typed, eitherE[e] = `th, or e is not a value and the
type ofv is a scope-safe subtype of the type ofe. Supposee is not a value. Thus, by
induction, it can be shown thatE[v] is well-typed and its type is a scope-safe subtype
of the type ofE[e]. Since the typee is visible to the type of̀ , the type ofv is visible to
the type of̀ as well. Moreover, the object`′ can safely accessv and` can safely access
`′. Thus,` can safely accessv and as a result, we havevisible(E [v], `) and`E[v] is
well-typed.

If C is a gate class type andrefcount(`′, P ′) = 0, then objects in the scope repre-
sented bỳ ′ will be deallocated and the objects in the fields of`′ will be reset to their ini-
tial value. Suppose that the resulted store isσ′. Supposeσ′′ = deallocate(σ, `′), σ′ =
σ′′[`′ 7→ C`′′

(null)]. Sinceσ′′ is a subset ofσ, it is apparently safe. Thus,σ′ is safe.
Sinceσ, P is safe and if the reference count of`′ is zero, then the objects allocated in
the scope of̀ ′ are not inσ′, σ′, P ′ is safe.

To show that∃Σ′ such thatP ′ is well-typed andΣ′ ` σ′, we letΣ′(`0) = C0 for
each`0 in the domain ofσ′ if the type ofσ′(`0) is C0. We only need to show that the
objects deallocated fromσ are not accessible inσ′ andP ′. The objects removed fromσ
are allocated in the scope represented by`′. Sinceσ is safe, for each object`0, the values
referenced in its fields are allocated in the same or outer scopes of`0. σ′ isσ with objects
allocated in the scope of`′ removed and the fields of`′ set to null. The objects allocated
in `′ are not accessible in the fields of objects inσ′ either. Suppose the opposite is
true: there exists̀0 in σ′ having a field holding objects allocated in`′. Then,̀ 0 must be
allocated in an inner scope of`′ – `′0. Sinceσ′, P ′ is safe,refcount(`′0, P

′) 6= 0 (because
otherwise, no objects inσ′ is allocated iǹ ′

0). However, ifrefcount(`′0, P
′) 6= 0, then`′

must be the receiver object of a stack frame in a thread preceding another frame with`′0
as the receiver object. Then,refcount(`′, P ′) 6= 0, which is a contradiction. Therefore,
no objects ofσ′ holds references to the objects allocated in`′ andσ′ is safe. The objects
allocated in the scope of`′ are not accessible to the threads inP ′. Suppose the opposite
is true: an object allocated iǹ′ appears in a stack frame of a thread inP ′. Then the
receiver object of the frame should have be allocated in the same or an inner scope of
`′. This means that̀′ must be the receiver of a frame on the call stack as well, which
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is a contradiction to the assumption that the reference count of`′ is zero inP ′. Thus,
σ′, P ′ is well-typed.

4. SupposeP = P ′′ | t[ ` e . ` e ] andP ′ = P ′′ | t[ ` e . ` E[`th] ] | t′[ ` `th . ` e′ ],
wheree = E[spawn e′]. It is clear thatσ, P ′ is well-typed and safe.

Lemma 4. If e has the form̀ .fi, `.fi := v, new C(), or `.m(v), and∃σ,Σ, `0 such that
σ and`0 e are well-typed then∃σ′, e′, `′ such thatσ, `0 e→ σ′, `′ e′.

Proof. 1. Supposee = `.fi. Sinceσ and`0 e are well-typed,̀ is defined inσ and the
fields of its type contains the fieldfi. Thus, if this field holds valuevi, thene′ = vi
andσ, `0 e→ σ, `0 e′.

2. Supposee = `.fi := v. Sinceσ and`0 e are well-typed,̀ is defined inσ and the
fields of its type containsfi. Thus,σ, `0 e→ σ′, `0 v, whereσ′ is σ with the fieldfi if
` in σ replaced byv.

3. Supposee = new C(). Sinceσ and`0, e are well-typed,̀ 0 is well-typed. Thus,
`′ is either`imm, `heap, or allocScopeσ(`0,). Let ` be a fresh label so thatσ′ = σ[` 7→
C`′

(null)]. Then,σ, `0 e→ σ′, `0 `.
4. Supposee = `.m(v). Sinceσ and `0, e are well-typed,̀ is defined inσ and

methodm is defined on object̀. If the method body and parameters ofm aree0 andx,
thenσ, `0 e→ σ, ` [ v/x, `/this]e0.

Proof of Lemma 2 (Progress)If σ, P is well-typed and not all threads inP have
terminated, then there existsσ′, P ′ such thatσ, P ⇒ σ′, P ′.

Proof. Since not all threads inP have terminated, there exists a thread inP with a call
stack of the form̀ e . ` E[e] or ` e . ` E[e] . `′ v, which does not contain null pointer
exception.

1. SupposeP = P ′′ | t[ ` e . ` E[e] ] wheree 6= `′.m(v) ande 6= spawn e′. Since
E[e] does not contain null pointer exception.e must have the form̀′.fi, `′.fi := v, or
new C(). Sinceσ, P is well-typed,σ and` e are well-typed. Thus, by Lemma 4,∃σ′, e′

such thatσ, ` e→ σ′, ` e′. Let P ′ = P ′′ | t[ ` e . ` E[e′] ]. Thenσ, P ⇒ σ′, P ′ by Rule
(G-Step).

2. SupposeP = P ′′ | t[ ` e . ` E[e] ] ande = `′.m(v). Sinceσ, P is well-typed,
σ and` e are well-typed. Thus, by Lemma 4,∃σ, e′ such thatσ, ` e → σ, ` ′e′. Let
P ′ = P ′′ | t[ ` e . ` E[e] . `′ e′ ]. Thenσ, P ⇒ σ, P ′ by Rule (G-Enter).

3. SupposeP = P ′′ | t[ ` e . ` e . `′ v ] Sinceσ, P is well-typed,e is either̀ th or has
the formE[e]′, wheree′ is not a value. LetP ′ = P ′′ | t[ ` e . ` E[v] ]. If the type of`′ is
not a gate or the reference count of`′ in P ′ is not zero, then letσ′ = σ. Otherwise, let
σ′ beσ with all objects in allocated iǹ′ removed and all fields of̀′ set to null. Then,
σ, P ⇒ σ′, P ′ by Rule (G-Return).

4. SupposeP = P ′′ | t[ ` e . ` e ] ande = E[spawn e′]. LetP ′ = P ′′ | t[ ` e . ` E[`th] ] |
t′[ ` `th . ` e′ ], wheret′ is a fresh thread label. Thenσ, P ⇒ σ, P ′ by Rule (G-Spawn).


